일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- 큰 수의 법칙
- 확률실험
- 프로젝트 오일러
- 큰수의법칙
- 피타고라스 정리
- project euler
- 지오지브라
- 제곱근의뜻
- 오일러
- 시뮬레이션
- 몬테카를로
- 삼각함수의그래프
- 재귀함수
- counting sunday
- 구분구적법
- 하합
- 리만합
- 알지오매스
- 이항분포
- java
- 파이썬
- python
- 프랙탈
- 수학탐구
- 블록코딩
- 상합
- 작도
- Geogebra
- 정오각형
- algeomath
- Today
- Total
이경수 선생님의 수학실험실
Problem 11(Largest product in a grid) 본문
Problem 11(Largest product in a grid)
In the 20×20 grid below, four numbers along a diagonal line have been marked in red.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
The product of these numbers is 26 × 63 × 78 × 14 = 1788696.
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
In Python:
#PE11 Largest product in a grid
f = open("./PE11_number.txt", 'r')
data=[int(num) for num in f.read().split()]
f.close()
import time
mult = 1
mults = []
start_time = time.time()
#Horizontal
for i in range(0, 397):
if i % 20 < 17:
mult = 1
for j in range(0, 4):
mult *= data[i + j]
mults.append(mult)
# Verticle
for i in range(0, 340):
mult = 1
for j in range(0, 4):
mult *= data[i + 20 * j]
mults.append(mult)
# Diagonal
for i in range(0, 337):
if i % 20 < 17:
mult = 1
for j in range(0, 4):
mult = mult * data[i + 21 * j]
mults.append(mult)
# Antidiagonal
for i in range(0, 340):
if i % 20 > 2:
mult = 1
for j in range(0, 4):
mult *= data[i + 19 * j]
mults.append(mult)
print(max(mults))
print(time.time()-start_time, "seconds")
Run time: 0.0018842220306396484 seconds
In Java:
//Euler11 Largest product in a grid
package project_euler;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
public class Euler11 {
public static void main(String[] args) throws IOException {
long startTime = System.currentTimeMillis();
int mult = 1;
String[] data;
ArrayList<Integer> dataList = new ArrayList<Integer>();
ArrayList<Integer> mults = new ArrayList<Integer>();
BufferedReader br = new BufferedReader (new FileReader("./Euler11_number.txt"));
while (true) {
String line = br.readLine();
if (line == null) break;
data = line.split(" ");
for (int i = 0; i < data.length; i++)
{
dataList.add(Integer.parseInt(data[i]));
}
}
br.close();
//Horisontal
for (int i = 0; i < 397; i++) {
if (i % 20 < 17) {
mult = 1;
for (int j = 0; j < 4; j++) {
mult *= dataList.get(i + j);
}
mults.add(mult);
}
}
//Verticle
for (int i = 0; i < 340; i++) {
mult = 1;
for (int j = 0; j < 4; j++) {
mult *= dataList.get(i + 20 * j);
}
mults.add(mult);
}
//Diagonal
for (int i = 0; i < 337; i++) {
if (i % 20 < 17) {
mult = 1;
for (int j = 0; j < 4; j++) {
mult *= dataList.get(i + 21 * j);
}
mults.add(mult);
}
}
//Antidiagonal
for (int i = 0; i < 340; i++) {
if (i % 20 > 2) {
mult = 1;
for (int j = 0; j < 4; j++) {
mult *= dataList.get(i + 19 * j);
}
mults.add(mult);
}
}
Collections.sort(mults);
System.out.println(mults.get(mults.size()-1));
long endTime = System.currentTimeMillis();
System.out.println((double)(endTime - startTime)/(double)1000 + "seconds");
}
}
Run Time: 0.012seconds
Solution: 70600674
[from Project Euler: https://projecteuler.net/problem=11]
'Project Euler' 카테고리의 다른 글
Problem 13(Large sum) (0) | 2019.02.10 |
---|---|
Problem 12(Highly divisible triangular number) (0) | 2019.02.10 |
Problem 10(Summation of primes) (0) | 2019.02.09 |
Problem 9(Special Pythagorean triplet) (0) | 2019.02.09 |
Problem 8(Largest product in a series) (0) | 2019.02.09 |