일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 시뮬레이션
- 프로젝트 오일러
- 구분구적법
- 블록코딩
- 하합
- 재귀함수
- counting sunday
- Geogebra
- 작도
- algeomath
- 지오지브라
- 삼각함수의그래프
- 확률실험
- python
- 큰수의법칙
- 큰 수의 법칙
- project euler
- java
- 몬테카를로
- 정오각형
- 피타고라스 정리
- 오일러
- 파이썬
- 리만합
- 수학탐구
- 제곱근의뜻
- 알지오매스
- 이항분포
- 상합
- 프랙탈
- Today
- Total
이경수 선생님의 수학실험실
Problem 6(Sum square difference) 본문
Problem 6(Sum square difference)
The sum of the squares of the first ten natural numbers is,
The square of the sum of the first ten natural numbers is,
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
In Python:
def sum_squre(n):
result=0
for i in range(1, n+1):
result+=pow(i,2)
return result
def squre_sum(n):
sum=0
for i in range(1,n+1):
sum+=i
result=pow(sum,2)
return result
print(squre_sum(100)-sum_squre(100))
In Java:
//Euler6 Sum square difference
package project_euler;
public class Euler6 {
public static int sumSqure(int n) {
int result = 0;
for (int i = 1; i < n + 1; i++) {
result += Math.pow(i, 2);
}
return result;
}
public static double squreSum(int n) {
int sum = 0;
double result = 0;
for (int i = 1; i < n + 1; i++) {
sum += i;
result = Math.pow(sum, 2);
}
return result;
}
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
System.out.println(squreSum(100) - sumSqure(100));
long endTime = System.currentTimeMillis();
System.out.println((double)(endTime - startTime) / (double)1000 + "seconds");
}
}
Run time: 0.002seconds
solution: 25164150
[from Project Euler: https://projecteuler.net/problem=6]
'Project Euler' 카테고리의 다른 글
Problem 8(Largest product in a series) (0) | 2019.02.09 |
---|---|
Problem 7(10001st prime) (0) | 2019.02.08 |
Problem 5(Smallest multiple) (0) | 2019.02.08 |
Problem 4(Largest palindrome product) (0) | 2019.02.07 |
Problem 3(Largest prime factor) (0) | 2019.02.06 |