Project Euler
Problem 31(Coin sums)
(이경수)
2019. 5. 12. 19:02
Problem 31(Coin sums)
In England the currency is made up of pound, £, and pence, p, and there are eight coins in general circulation:
1p, 2p, 5p, 10p, 20p, 50p, £1 (100p) and £2 (200p).
It is possible to make £2 in the following way:
1×£1 + 1×50p + 2×20p + 1×5p + 1×2p + 3×1p
How many different ways can £2 be made using any number of coins?
In Python:
#PE31 Coin sums
import time
startTime = time.time()
def func(change, coins, k):
if change - k * coins[0] == 0:
return 1
elif change - k * coins[0] > 0 and len(coins) == 2:
return 1
elif change - k * coins[0] < 0:
return 0
else:
return sum(func(change - k * coins[0], coins[1:], l) for l in range(0, (change - k * coins[0]) // coins[1] + 1))
coins = [200, 100, 50, 20, 10, 5, 2, 1]
print(func(200, coins, 0) + func(200, coins, 1))
print(time.time() - startTime, "seconds")
Run time: 0.12133002281188965 seconds
In Java:
package project_euler31_40;
public class Euler31 {
public static int func(int change, int coinNum, int k) {
int[] coins = {200, 100, 50, 20, 10, 5, 2, 1};
if (change - k * coins[coinNum] == 0) {
return 1;
}
else if (change - k * coins[coinNum] > 0 && coinNum == 6) {
return 1;
}
else if (change - k * coins[coinNum] < 0) {
return 0;
}
else {
int sum = 0;
int n = Math.floorDiv(change - k * coins[coinNum], coins[coinNum + 1]) + 1;
for (int i = 0; i < n; i++) {
sum += func(change - k * coins[coinNum], coinNum + 1, i);
}
return sum;
}
}
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
System.out.println(func(200, 0, 0) + func(200, 0, 1));
long endTime = System.currentTimeMillis();
System.out.println((double)(endTime - startTime)/(double)1000 + "seconds");
}
}
Run time: 0.008seconds
Solution: 73682