Project Euler
Problem 26(Reciprocal cycles)
(이경수)
2019. 5. 11. 22:14
Problem 26(Reciprocal cycles)
A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
1/2= 0.5
1/3= 0.(3)
1/4= 0.25
1/5= 0.2
1/6= 0.1(6)
1/7= 0.(142857)
1/8= 0.125
1/9= 0.(1)
1/10= 0.1
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
In Python:
import time
def remainder(i, r):
return 10 * r % i
startTime = time.time()
sizeCycle = []
for i in range(2, 1000):
remainders = [1]
while(True):
remainders.append(remainder(i, remainders[-1]))
if remainders[-1] in remainders[0: -1] or remainders[-1] == 0:
sizeCycle.append(len(remainders))
break
print(sizeCycle.index(max(sizeCycle)) + 2)
print(time.time() - startTime, "seconds")
Run time: 0.3535029888153076 seconds
In Java:
package project_euler21_30;
import java.util.ArrayList;
import java.util.Collections;
public class Euler26 {
public static int remainder(int i, int r) {
return 10 * r % i;
}
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
ArrayList<Integer> sizeCycle = new ArrayList<Integer>();
for (int i = 2; i < 1000; i++) {
ArrayList<Integer> remainders = new ArrayList<Integer>();
remainders.add(1);
while(true) {
int value = remainder(i, remainders.get(remainders.size() - 1));
if (remainders.contains(value) == true || value == 0) {
sizeCycle.add(remainders.size());
break;
} else {
remainders.add(value);
}
}
}
System.out.println(sizeCycle.indexOf(Collections.max(sizeCycle)) + 2);
long endTime = System.currentTimeMillis();
System.out.println((double)(endTime - startTime)/(double)1000 + "seconds");
}
}
Run time: 0.063seconds
Solution: 983