Project Euler
Problem 40(Champernowne's constant)
(이경수)
2019. 6. 16. 14:04
Problem 40(Champernowne's constant)
An irrational decimal fraction is created by concatenating the positive integers:
0.123456789101112131415161718192021...
It can be seen that the 12th digit of the fractional part is 1.
If \(d_{n}\) represents the nth digit of the fractional part, find the value of the following expression.
\(d_{1}\) × \(d_{10}\) × \(d_{100}\) × \(d_{1000}\) × \(d_{10000}\) × \(d_{100000}\) × \(d_{1000000}\)
In Python:
import time
startTime = time.time()
digitList = []
orderList = [1, 10, 10 ** 2, 10 ** 3, 10 ** 4, 10 ** 5, 10 ** 6]
product = 1
for n in range(1, 10 ** 6):
numList = list(str(n))
for num in numList:
digitList.append(int(num))
for order in orderList:
product *= digitList[order - 1]
print(product)
print(time.time() - startTime, "seconds")
Run time: 2.7522952556610107 seconds
In Java:
package project_euler31_40;
import java.util.ArrayList;
public class Euler40 {
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
int product = 1;
int[] orderList = {1, 10, (int)Math.pow(10, 2),
(int)Math.pow(10, 3), (int)Math.pow(10, 4),
(int)Math.pow(10, 5), (int)Math.pow(10, 6)};
ArrayList<Integer> digitList = new ArrayList<Integer>();
String nStr = "";
String nData[];
for (int n = 1; n < (int)Math.pow(10, 6); n++) {
nStr = Integer.toString(n);
nData = nStr.split("");
for (int i = 0; i < nData.length; i++) {
digitList.add(Integer.parseInt(nData[i]));
}
}
for (int order : orderList) {
product *= digitList.get(order - 1);
}
System.out.println(product);
long endTime = System.currentTimeMillis();
System.out.println((double)(endTime - startTime)/(double)1000 + "seconds");
}
}
Run time: 1.571seconds
Solution: 210